Radial position-momentum uncertainties for the Dirac hydrogen-like atoms

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
2006 J. Phys. A: Math. Gen. 398663
(http://iopscience.iop.org/0305-4470/39/27/007)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.105
The article was downloaded on 03/06/2010 at 04:40

Please note that terms and conditions apply.

Radial position-momentum uncertainties for the Dirac hydrogen-like atoms

Wen-Chao Qiang ${ }^{1}$ and Shi-Hai Dong ${ }^{2}$
${ }^{1}$ Faculty of Science, Xi'an University of Architecture and Technology, Xi'an, 710055, People's Republic of China
${ }^{2}$ Departamento de Física, Escuela Superior de Física y Matemáticas, Instituto Politécnico
Nacional, Edificio 9, Unidad Profesional Adolfo López Mateos, México D F, 07738, Mexico
E-mail: qwcqj@pub.xaonline.com and dongsh2@yahoo.com

Received 23 January 2006
Published 21 June 2006
Online at stacks.iop.org/JPhysA/39/8663

Abstract

We show how the radial position-momentum uncertainty product can be obtained analytically for the Dirac hydrogen-like atoms. Some interesting features for this system are found. First, for the same principal quantum number n, as the azimuthal quantum number l increases, the uncertainties Δp_{r} and $\Delta r \Delta p_{r}$ decrease. However, the uncertainty Δr does not always decrease, which is different from the non-relativistic hydrogen-like atoms case, where it always decreases. Second, for the same l both Δr and $\Delta r \Delta p_{r}$ increase as n increases. Third, all uncertainties for the same n and $l=n-1$ are smallest in comparison with those for the same n but $l \neq n-1$. Fourth, the uncertainty $\Delta r \Delta p_{r}$ is independent of the value of charge Z in the non-relativistic case, while it is related with the value of charge Z in the relativistic case. Fifth, the relativistic corrections to the non-relativistic values of uncertainties are very small when the values of charge Z are not too big, while the relativistic corrections to them will appear explicitly for a large value of charge Z.

PACS numbers: 03.65.-w, 03.65.Pm

1. Introduction

The great physicist Heisenberg introduced into physics a famous 'uncertainty principle' which is one of the deepest philosophical contributions in quantum mechanics. The frequently quoted statement of this principle addresses: 'It is impossible to know both the position and the momentum of a particle at a given momentum to an arbitrary degree of accuracy' [1], which is expressed as $\Delta x \Delta p \geqslant \hbar / 2$.

It is usually known that the position-momentum uncertainty products for the harmonic oscillator and non-relativistic hydrogen atom were obtained analytically 75 years ago [2].

Some decades later, the position-momentum uncertainty relations for several exactly solvable potentials such as the symmetric Pöschl-Teller, symmetric Rosen-Morse and one-dimensional Morse potentials were carried out and discussed [3]. It should be noted that almost all contributions to this topic are limited to the one-dimensional Schrödinger equation. Nevertheless, the radial position-momentum uncertainties for the non-relativistic hydrogenlike atoms in three dimensions have been studied recently by Kuo [4]. Due to their importance in physics, we attempt to show how the position-momentum uncertainty relations for the Dirac hydrogen-like atoms can be obtained analytically, which is the main purpose of this work.

This paper is organized as follows. In section 2 we present the exact uncertainties $\Delta r, \Delta p_{r}$ and $\Delta r \Delta p_{r}$ for the Dirac hydrogen-like atoms with the aid of the recently developed MATHEMATICA package INTEPFFLL [5]. Section 3 is devoted to the study of some interesting properties of these uncertainties by taking a few typical values of charge Z. In section 4 we study two special cases for $l=0$ and $l=n-1$. The non-relativistic limit is carried out in section 5 . Some concluding remarks are given in section 6 .

2. Relativistic hydrogen-like atoms

Let us first mention the convention used in writing the exact solutions of the Dirac hydrogenlike atoms before studying the mean values of the position r and radial momentum p_{r}.

Generally speaking, we can write down the Dirac equation as follows:

$$
\begin{equation*}
\left[c \alpha \cdot p+\beta m c^{2}+V(r)\right] \Psi(\mathbf{r})=E \Psi(\mathbf{r}) \tag{1}
\end{equation*}
$$

where α and β are the Dirac matrices given by

$$
\alpha=\left(\begin{array}{ll}
0 & \sigma \tag{2}\\
\sigma & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

If we make use of the convenient form [6-8]

$$
\begin{equation*}
\Psi(\mathbf{r})=\binom{i f(r) \Omega_{j l m}(\theta, \varphi)}{-g(r) \Omega_{j l^{\prime} m}(\theta, \varphi)} \tag{3}
\end{equation*}
$$

where $l=j \pm 1 / 2,\left|l-l^{\prime}\right|=1$ and $\Omega_{j l m}(\theta, \varphi)$ are the spherical spinors, then the exact solutions of the Dirac equation with a Coulomb-like potential $V(r)=-Z e / r$ can be expressed as follows $(c=1)[6,9]$,

$$
\left.\begin{array}{rl}
f(r) \\
g(r) \tag{4}
\end{array}\right\}= \pm \frac{(2 \beta)^{3 / 2}}{\Gamma(2 \gamma+1)} \sqrt{\frac{(1 \pm \epsilon) \Gamma\left(2 \gamma+n^{\prime}+1\right)}{n^{\prime}!4 N(N-\kappa)}} \mathrm{e}^{-\beta r}(2 \beta r)^{\gamma-1}, \quad \times\left[\mp n^{\prime} F\left(-n^{\prime}+1,1+2 \gamma, 2 \beta r\right)+(N-\kappa) F\left(-n^{\prime}, 1+2 \gamma, 2 \beta r\right)\right], ~ l
$$

with the following dimensionless parameters
$\beta=\frac{Z}{N a_{0}}, \quad \gamma=\sqrt{\kappa^{2}-Z^{2} \alpha^{2}}, \quad N=\sqrt{n^{2}-2 n^{\prime}(|\kappa|-\gamma)}$,
$a_{0}=\frac{m c \alpha}{\hbar}, \quad \epsilon=\frac{E}{E_{0}}=\left[1+\frac{Z^{2} \alpha^{2}}{\left(n^{\prime}+\gamma\right)^{2}}\right]^{-1 / 2}=\frac{n^{\prime}+\gamma}{N}$,
$n=n^{\prime}+|\kappa|=n^{\prime}+j+1 / 2, \quad n^{\prime}=0,1,2, \ldots$,
where the fine structure constant is taken as $\alpha \simeq 1 / 137$. The E and $E_{0}=m c^{2}$ denote the energy and the rest energy of the electron, respectively, and κ is defined by

$$
\kappa= \begin{cases}-(j+1 / 2)=-(l+1), & \text { for } j=l+1 / 2 \tag{6}\\ (j+1 / 2)=l, & \text { for } j=l-1 / 2\end{cases}
$$

Now, we derive the position uncertainty Δr for the Dirac hydrogen-like atoms case. To this end, from equation (4) we can evaluate the mean values of r^{s} as follows:

$$
\begin{align*}
\left\langle r^{s}\right\rangle= & \int_{0}^{\infty} r^{s+2}\left(|f(r)|^{2}+|g(r)|^{2}\right) \mathrm{d} r \\
= & \frac{2^{-s} \Gamma\left(1+n^{\prime}+2 \gamma\right)}{N(N-\kappa) n^{\prime}!\Gamma(1+2 \gamma)^{2}}\left[n^{\prime 2} I_{F F}\left(n^{\prime}-1,0,1+2 \gamma, 0, s-1\right)\right. \\
& +2 n^{\prime} \epsilon(-N+\kappa) I_{F F}\left(n^{\prime}-1,1,1+2 \gamma, 0, s-1\right) \\
& \left.+(N-\kappa)^{2} I_{F F}\left(n^{\prime}, 0,1+2 \gamma, 0, s-1\right)\right], \tag{7}
\end{align*}
$$

where we have used our developed MATHEMATICA package INTEPFFLL to compute these complicated integrals including the product of the confluent hypergeometric functions $[5,10,11]$
$I_{F F}(n, \Delta n, \mu, \Delta \mu, \lambda)=\int_{0}^{\infty} \mathrm{e}^{-x} x^{\mu+\lambda} F(-n, \mu ; x) F[-(n+\Delta n), \mu+\Delta \mu ; x] \mathrm{d} x$,
where $\Delta n, \Delta \mu$ and λ are integers and $\Delta n \geqslant 0$.
Here we want to make two useful remarks about equation (8). First, this integral formula for some different choices of $\Delta n, \Delta \mu$ and λ can be obtained analytically as shown in our recent works $[5,10,11]$. Also, it should be pointed out that our developed package INTEPFFLL are enough to be used to perform all the present calculations of uncertainty relations for the Dirac hydrogen-like atoms even though this program has its own limitation. Second, it is well known that the confluent hypergeometric functions can be written as the form of the associated Laguerre polynomials [15]

$$
\begin{equation*}
F(-n, \mu ; x)=\frac{n!\Gamma(\mu)}{\Gamma(n+\mu)} L_{n}^{\mu-1}(x), \quad n=0,1,2, \ldots, \quad \Re e \mu>0 \tag{9}
\end{equation*}
$$

Using this, we can define

$$
\begin{align*}
I_{L L}(n, m, \mu, v, \lambda) & =\int_{0}^{\infty} \mathrm{e}^{-x} x^{\lambda} F(-n, \mu ; x) F(-m, v ; x) \mathrm{d} x \\
& =\Gamma(\mu) \Gamma(v) \frac{n!m!}{\Gamma(n+\mu) \Gamma(m+v)} \int_{0}^{\infty} \mathrm{e}^{x} x^{\lambda} L_{n}^{\mu-1}(x) L_{m}^{v-1}(x) \mathrm{d} x \tag{10}
\end{align*}
$$

where $n, m=0,1,2, \ldots$, and $\Re e \mu>0, \Re e v>0$ and $\Re e \lambda>-1$. Therefore, we notice that this formula is more general than $I_{F F}$ given in equation (8) since μ and v are not limited to integers only. To show the existence of an exact analytical formula for equation (10), we want to briefly sketch this result following [12-14], from which one can obtain the following result:

$$
\begin{gather*}
\int_{0}^{\infty} \mathrm{e}^{-x} x^{\lambda} L_{n}^{\mu-1}(x) L_{m}^{\nu-1}(x) \mathrm{d} x=\Gamma(\lambda+1) \frac{\Gamma(n+\mu-\lambda-1) \Gamma(m+v-\lambda-1)}{n!m!\Gamma(\mu-\lambda-1) \Gamma(v-\lambda-1)} \\
\times{ }_{3} F_{2}(-n,-m, \lambda+1 ; \lambda-\mu-n+2, \lambda-v-m+2 ; 1) \tag{11}
\end{gather*}
$$

where ${ }_{3} F_{2}$ is a generalized hypergeometric series. It can be easy to compute by using its well-known definition

$$
\begin{equation*}
{ }_{3} F_{2}(-n,-m, a ; b, c ; 1)=\sum_{k=0}^{\min [n, m]} \frac{(-n)_{k}(-m)_{k}(a)_{k}}{(b)_{k}(c)_{k} k!}, \tag{12}
\end{equation*}
$$

where $(x)_{k}$ stands for the Pochhammer symbol defined by

$$
\begin{equation*}
(x)_{k}=\frac{\Gamma(x+k)}{\Gamma(x)} \tag{13}
\end{equation*}
$$

Thus, we can finally express equation (10) as follows:

$$
\begin{gather*}
I_{L L}(n, m, \mu, v, \lambda)=\frac{\Gamma(\mu) \Gamma(v) \Gamma(\lambda+1)}{\Gamma(n+\mu) \Gamma(m+v)} \frac{\Gamma(n+\mu-\lambda-1) \Gamma(m+v-\lambda-1)}{\Gamma(\mu-\lambda-1) \Gamma(v-\lambda-1)} \\
\times{ }_{3} F_{2}(-n,-m, \lambda+1 ; \lambda-\mu-n+2, \lambda-v-m+2 ; 1) \tag{14}
\end{gather*}
$$

It should be pointed out that, in principle, we can make use of these two formulae (8) and (14) to obtain all results that we require. Nevertheless, we can quickly obtain all required calculations of the uncertainty relations for the Dirac hydrogen-like atoms with the aid of our developed MATHEMATICA program. Moreover, it should be noted that the results obtained from this MATHEMATICA package are also analytical, as shown in our recent works and present paper [10, 11]. In particular, such a tedious task can be easily and quickly performed by this MATHEMATICA package [5].

We now go about to study the uncertainty relations for the Dirac hydrogen-like atoms. In order to calculate the uncertainty Δr, we have to know the mean values of r and r^{2} for an electron in the Dirac hydrogen-like atoms case. Fortunately, they have been already known in our recent work [11]:

$$
\begin{align*}
& \langle r\rangle=\frac{a_{0}}{2 Z}\left[-\kappa+\frac{\left(n^{\prime}+\gamma\right)\left[3 n^{\prime}\left(n^{\prime}+2 \gamma\right)+2 \kappa^{2}\right]}{N}\right] \tag{15}\\
& \begin{aligned}
\left\langle r^{2}\right\rangle= & \frac{a_{0}^{2}}{2 Z^{2}}\left[n^{\prime}\left(n^{\prime}+2 \gamma\right)\left(1+5 n^{\prime 2}+10 n^{\prime} \gamma+4 \gamma^{2}\right)+\left(1+3 n^{\prime 2}\right.\right. \\
& \left.\left.\quad+6 n^{\prime} \gamma+2 \gamma^{2}\right) \kappa^{2}-3\left(n^{\prime}+\gamma\right) \kappa N\right] .
\end{aligned}
\end{align*}
$$

The uncertainty Δr in the measurement of the distance of the electron from the nucleus can be obtained as follows:

$$
\begin{align*}
\Delta r= & \sqrt{\left\langle r^{2}\right\rangle-\langle r\rangle^{2}} \\
= & \frac{a_{0}}{2 Z N^{2}}\left[n^{\prime 2}\left(n^{\prime}+2 \gamma\right)^{2}\left(2+n^{\prime 2}+2 n^{\prime} \gamma-\gamma^{2}\right)+n^{\prime}\left(n^{\prime}+2 \gamma\right)\left(3+4 n^{\prime}\left(n^{\prime}+2 \gamma\right)\right) \kappa^{2}\right. \\
& \left.-2 N\left(n^{\prime}+\gamma\right) \kappa^{3}+\left(1+2 n^{\prime}\left(n^{\prime}+2 \gamma\right)\right) \kappa^{4}\right]^{1 / 2}, \tag{17}
\end{align*}
$$

which means that Δr is inversely proportional to the value of charge Z except for its dependence on the principal quantum number $n\left(n^{\prime}=n-|\kappa|\right)$ and azimuthal quantum number l. The latter can take n different values in all for a given n with $l=0,1, \ldots, n-1$. On the other hand, the relative dispersion $\Delta r /\langle r\rangle$ in the measurement of radial position, which also depends on the quantum numbers n and l as well as the value of charge Z, will give us a possible estimate of how indeterminate the measurement in radial position r is relative to the mean value $\langle r\rangle$ of the radial position r for an electron in the Dirac hydrogen-like atoms.

In order to obtain the product $\Delta r \Delta p_{r}$ of the uncertainties Δr and Δp_{r}, we have to study the radial momentum uncertainty Δp_{r}. To this end, we begin by considering the definition of the radial momentum

$$
\begin{equation*}
p_{r}=-\mathrm{i} \hbar \frac{1}{r} \frac{\partial}{\partial r} r=-\mathrm{i} \hbar\left(\frac{\partial}{\partial r}+\frac{1}{r}\right), \tag{18}
\end{equation*}
$$

from which we can obtain $\left\langle p_{r}\right\rangle=0$. This coincides with the result for other exactly solvable potentials [2-4].

Now, let us derive the mean value of p_{r}^{2}

$$
\begin{align*}
\left\langle p_{r}^{2}\right\rangle & =(-\mathrm{i} \hbar)^{2} \int_{0}^{\infty} r^{2}\{f(r), g(r)\} \frac{1}{r} \frac{\partial^{2}}{\partial r^{2}}\left(r\{f(r), g(r)\}^{T}\right) \mathrm{d} r \\
& =\hbar^{2} \int_{0}^{\infty} r^{2}\left[\left(\frac{\mathrm{~d} f(r)}{\mathrm{d} r}\right)^{2}+\left(\frac{\mathrm{d} g(r)}{\mathrm{d} r}\right)^{2}\right] \mathrm{d} r \tag{19}
\end{align*}
$$

Table 1. Some uncertainties of the Dirac hydrogen-like atom $\mathrm{H}(Z=1)$ for $\kappa=-(l+1)$.

$(n l)$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{R}$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{a_{0}}\right)_{R}$	$\left(\frac{\Delta r}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{R}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{N}$	$\left(\frac{\Delta p_{r} a_{0}}{\hbar}\right)_{R}$	$\left(\frac{a_{0} \Delta p_{r}}{\hbar}\right)_{N}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{R} \quad\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{N}$	
(10)	1.499973	1.5000000	0.8660177	0.8660254	0.5773554	0.57735027	1.0000266	1.00000000	0.866041	0.8660254
(20)	5.999883	6.000000	2.449468	2.4494897	0.4082526	0.40824829	0.5000150	0.50000000	1.224771	1.2247449
(21)	4.999973	5.000000	2.236062	2.2360680	0.4472148	0.44721360	0.2886764	0.28867513	0.6454984	0.6454972
(30)	13.499802	13.500000	4.974893	4.9749372	0.3685160	0.36851387	0.3333413	0.33333333	1.658337	1.6583124
(31)	12.49993	12.500000	4.873386	4.8733972	0.3898732	0.38987177	0.2484535	0.24845200	1.210810	1.2108053
(32)	10.49997	10.500000	3.968622	3.9686270	0.3779650	0.37796447	0.1490715	0.14907120	0.591608	0.5916080
(40)	23.99972	24.000000	8.485212	8.4852814	0.3535546	0.35355339	0.2500049	0.25000000	2.121345	2.1213203
(41)	22.99988	23.000000	8.426130	8.4261498	0.3663553	0.36635434	0.2041253	0.20412415	1.719986	1.7199806
(42)	20.99994	21.000000	7.937246	7.9372539	0.3779651	0.37796447	0.1581143	0.15811388	1.254992	1.2549900
(43)	17.99997	18.000000	5.999996	6.000000	0.3333336	0.33333333	0.0944912	0.09449112	0.566947	0.5669467
(50)	37.49964	37.500000	12.990286	12.990381	0.3464109	0.34641016	0.2000033	0.20000000	2.598100	2.5980762
(51)	36.49984	36.500000	12.951803	12.951834	0.3548454	0.35484476	0.1712706	0.17126977	2.218263	2.2182576
(52)	34.49991	34.500000	12.63921	12.639225	0.3663549	0.36635434	0.1442224	0.14422205	1.822857	1.8228549
(53)	31.49995	31.500000	11.52171	11.521719	0.3657692	0.36576885	0.1121225	0.11212238	1.291843	1.2918425
(54)	27.49997	27.500000	8.29156	8.291562	0.3015115	0.30151134	0.06666671	0.06666667	0.552771	0.5527708
(60)	53.99956	54.00000	18.493121	18.493242	0.3424680	0.34246744	0.1666690	0.166666667	3.082230	3.0822070
(61)	52.99980	53.00000	18.46614	18.466185	0.3484191	0.34841859	0.1469868	0.14698618	2.714280	2.7142741
(62)	50.99988	51.00000	18.24827	18.248288	0.3578100	0.35780956	0.1290997	0.12909944	2.355847	2.3558438
(63)	47.99993	48.00000	17.49285	17.492856	0.3644348	0.36443449	0.1091091	0.10910895	1.908628	1.9086270
(64)	43.99995	44.00000	15.55634	15.556349	0.3535536	0.35355339	0.08486258	0.08486251	1.320151	1.3201509
(65)	38.99997	39.00000	10.81665	10.816654	0.2773502	0.27735010	0.05025191	0.05025189	0.543557	0.5435573

By substituting equation (4) into equation (19) and then using the recursion relation $z F(1+\alpha, 1+\gamma ; z)=\gamma F(1+\alpha, \gamma ; z)-\gamma F(\alpha, \gamma ; z)[15]$, we can obtain a very complicated expression of $\left\langle p_{r}^{2}\right\rangle$, which includes 24 integrals $I_{F F}(n, \Delta n, m, \Delta m, \lambda)$ with different $n, \Delta n, m$ and Δm. By using package INTEPFFLL [5] and greatly simplifying, we can finally obtain the uncertainty for the radial momentum p_{r} as follows,

$$
\begin{align*}
\Delta p_{r}= & \sqrt{\left\langle p_{r}^{2}\right\rangle-\left\langle p_{r}\right\rangle^{2}} \\
= & \frac{\hbar Z}{a_{0} N^{2} \sqrt{2\left(4 \gamma^{2}-1\right)(N-\kappa)}}\left\{-4 n^{\prime 3} \gamma(N-2 \kappa)+n^{\prime 2}\left[-N(3+2 \gamma)+4 \kappa\left(1+2 \gamma^{2}\right)\right]\right. \\
& \left.-2 n^{\prime} \gamma\left(N-2 N^{3}+2 N \gamma-2 \kappa+4 N^{2} \kappa-2 N \kappa^{2}\right)+N(1+2 \gamma)(N-\kappa)^{2}\right\}^{1 / 2}, \tag{20}
\end{align*}
$$

which depends on the quantum numbers n and l and is proportional to the value of charge Z.
Based on the results (17) and (20), we finally obtain a rather complicated expression of the product of the radial position and radial momentum uncertainties,

$$
\begin{align*}
\Delta r \Delta p_{r}= & \frac{\hbar}{2 N^{3} \sqrt{2\left(4 \gamma^{2}-1\right)\left(N^{2}-\kappa\right)}}\left\{\left[n^{\prime 2}\left(n^{\prime 2}+2 \gamma\right)^{2}\left(2+n^{\prime 2}+2 n^{\prime} \gamma-\gamma^{2}\right)\right.\right. \\
& \left.+n^{\prime}\left(n^{\prime}+2 \gamma\right)\left(3+4 n^{\prime}\left(n^{\prime}+2 \gamma\right)\right) \kappa^{2}-2 N\left(n^{\prime}+\gamma\right) \kappa^{3}+\left(1+2 n^{\prime}\left(n^{\prime}+2 \gamma\right)\right) \kappa^{4}\right] \\
& \times\left[-4 n^{\prime 3} \gamma(N-2 \kappa)+n^{\prime 2}\left(-N(3+2 \gamma)+4 \kappa\left(1+2 \gamma^{2}\right)\right)-2 n^{\prime} \gamma\left(N-2 N^{3}+2 N \gamma\right.\right. \\
& \left.\left.\left.-2 \kappa+4 N^{2} \kappa-2 N \kappa^{2}\right)+N(1+2 \gamma)(N-\kappa)^{2}\right]\right\}^{1 / 2}, \tag{21}
\end{align*}
$$

from which we find that the product $\Delta r \Delta p_{r}$ of the radial position-momentum uncertainty relations is exact and analytical. We will study some properties of these uncertainties by taking a few typical values of charge Z in the next section.

3. Some properties of uncertainties in radial position and momentum

Due to the complicated expressions for the uncertainties $\Delta r, \Delta p_{r}$, relative dispersion $\Delta r /\langle r\rangle$ and product $\Delta r \Delta p_{r}$, we want to show some interesting features of these uncertainties by doing some typical calculations. Some useful results of $\kappa=-(l+1)$ for $n \in[1,6]$ and $Z=1,11,37,87$ with different l are listed in tables $1-4$, where we have used the subscripts R

Table 2. Some uncertainties of the Dirac hydrogen-like atom $\mathrm{Na}(Z=11)$ for $\kappa=-(l+1)$.

$(n l)$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{R}$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{a_{0}}\right)_{R}$	$\left(\frac{\Delta r}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{R}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{N}$	$\left(\frac{\Delta p_{r} a_{0}}{\hbar}\right)_{R}$	$\left(\frac{a_{0} \Delta p_{r}}{\hbar}\right)_{N}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{R}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{N}$
(10)	0.1360701	0.13636364	0.07864481	0.07872958	0.5779726	0.57735027	11.035688	11.000000	0.867900	0.8660254
(20)	0.5441710	0.5454545	0.2224410	0.22268089	0.4087704	0.40824829	5.520068	5.5000000	1.227889	1.2247449
(21)	0.4542523	0.4545455	0.2032133	0.20327891	0.4473579	0.44721360	3.177134	3.175426	0.6456361	0.6454972
(30)	1.2250883	1.2272727	0.4517800	0.45226702	0.3687734	0.36851387	3.677380	3.6666667	1.661367	1.6583124
(31)	1.135549	1.1363636	0.4429141	0.44303611	0.3900439	0.38987177	2.734932	2.7329720	1.211340	1.2108053
(32)	0.954252	0.9545455	0.3607289	0.36078427	0.3780225	0.37796447	1.640136	1.639783	0.591644	0.5916080
(40)	2.178746	2.1818182	0.7706280	0.77138922	0.3537025	0.35355339	2.756546	2.7500000	2.124271	2.1213203
(41)	2.089627	2.0909091	0.7657918	0.76601362	0.3664730	0.36635434	2.246890	2.2453656	1.720650	1.7199806
(42)	1.908441	1.9090909	0.7214766	0.72156854	0.3780451	0.37796447	1.739758	1.7392527	1.255195	1.2549900
(43)	1.636071	1.6363636	0.5454057	0.5454545	0.3333632	0.33333333	1.039522	1.0394023	0.566961	0.5669467
(50)	3.405135	3.4090909	1.1798985	1.1809437	0.3465056	0.34641016	2.204392	2.2000000	2.600959	2.5980762
(51)	3.316446	3.3181818	1.1770960	1.1774394	0.3549269	0.35484476	1.885120	1.8839674	2.218967	2.2182576
(52)	3.135391	3.1363636	1.1488725	1.1490204	0.3664209	0.36635434	1.586916	1.5864426	1.823164	1.8228549
(53)	2.863071	2.8636364	1.047351	1.0474290	0.3658137	0.36576885	1.233535	1.2333462	1.291944	1.2918425
(54)	2.499707	2.5000000	0.753734	0.7537784	0.3015290	0.30151134	0.7333859	0.7333333	0.552778	0.5527708
(60)	4.904253	4.9090909	1.6798704	1.6812038	0.3425334	0.34246744	1.836478	1.8333333	3.085045	3.0822070
(61)	4.816000	4.8181818	1.6782687	1.6787441	0.3484777	0.34841859	1.617734	1.6168480	2.714993	2.7142741
(62)	4.635081	4.6363636	1.658716	1.6589352	0.3578613	0.35780956	1.420499	1.4200939	2.356205	2.3558438
(63)	4.362822	4.3636364	1.590144	1.5902596	0.3644759	0.36443449	1.200395	1.2001984	1.908801	1.9086270
(64)	3.999486	4.000000	1.414143	1.4142136	0.3535812	0.35355339	0.933575	0.9334876	1.320209	1.3201509
(65)	3.545161	3.545455	0.983292	0.9833322	0.2773616	0.27735010	0.5527978	0.5527708	0.543561	0.5435573

Table 3. Some uncertainties of the Dirac hydrogen-like atom $\operatorname{Rb}(Z=37)$ for $\kappa=-(l+1)$.

$(n l)$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{R}$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{a_{0}}\right)_{R}$	$\left(\frac{\Delta r}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{R}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{N}$	$\left(\frac{\Delta p_{r} a_{0}}{\hbar}\right)_{R}$	$\left(\frac{a_{0} \Delta p_{r}}{\hbar}\right)_{N}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{R}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{N}$
(10)	0.03953621	0.040540541	0.02311435	0.023406092	0.5846374	0.57735027	38.45664	37.000000	0.888900	0.8660254
(20)	0.1577899	0.16216216	0.06537342	0.066202425	0.4143068	0.40824829	19.31608	18.500000	1.262758	1.2247449
(21)	0.1341449	0.13513514	0.06021245	0.060434270	0.4488611	0.44721360	10.746804	10.680980	0.6470914	0.6454972
(30)	0.3574131	0.36486486	0.13278291	0.13445776	0.3715110	0.36851387	12.76751	12.333333	1.695307	1.6583124
(31)	0.3350914	0.33783784	0.1312995	0.13171344	0.3918319	0.38987177	9.26823	9.192724	1.216914	1.2108053
(32)	0.2827961	0.28378378	0.1070734	0.10726019	0.3786239	0.37796447	5.529121	5.515634	0.592022	0.5916080
(40)	0.6381608	0.6486486	0.2267187	0.22933193	0.3552690	0.35355339	9.51455	9.250000	2.157128	2.1213203
(41)	0.6172947	0.6216216	0.2269823	0.22773378	0.3677049	0.36635434	7.611316	7.552593	1.727634	1.7199806
(42)	0.5653777	0.5675676	0.2142099	0.21452038	0.3788793	0.37796447	5.869545	5.850214	1.257314	1.2549900
(43)	0.4854997	0.4864865	0.1619976	0.16216216	0.3336719	0.33333333	3.500739	3.496171	0.567111	0.5669467
(50)	1.0000019	1.0135135	0.3475064	0.35109138	0.3475057	0.34641016	7.57715	7.400000	2.633108	2.5980762
(51)	0.9806302	0.9864865	0.3488874	0.35004956	0.3557788	0.35484476	6.381351	6.336981	2.226373	2.2182576
(52)	0.9291554	0.9324324	0.3411014	0.34160067	0.3671091	0.36635434	5.354309	5.336216	1.826362	1.8228549
(53)	0.8494475	0.8513514	0.3111337	0.31139780	0.3662777	0.36576885	4.155741	4.148528	1.292991	1.2918425
(54)	0.7422569	0.7432432	0.2239475	0.22409627	0.3017116	0.30151134	2.468670	2.466667	0.552852	0.5527708
(60)	1.4429291	1.4594595	0.4952463	0.49981735	0.3432229	0.34246744	6.29332	6.1666667	3.116742	3.0822070
(61)	1.4250670	1.4324324	0.4974781	0.49908609	0.3490910	0.34841859	5.472587	5.438489	2.722492	2.7142741
(62)	1.374060	1.3783784	0.4924585	0.49319696	0.3583967	0.35780956	4.792180	4.776679	2.359950	2.3558438
(63)	1.294557	1.2972973	0.4723892	0.47277988	0.3649041	0.36443449	4.044534	4.037031	1.910594	1.9086270
(64)	1.187461	1.1891892	0.4202053	0.42044187	0.3538688	0.35355339	3.143236	3.139913	1.320805	1.3201509
(65)	1.053068	1.0540541	0.2922052	0.29234200	0.2774799	0.27735010	1.860349	1.859320	0.543604	0.5435573

and N to denote the relativistic hydrogen-like atoms case and the non-relativistic hydrogen-like atoms case, respectively. We do not list the results of the Dirac hydrogen-like atoms for other values of charge Z for simplicity. Similarly, we do not list the results of $\kappa=l$ since they are the same as those of $\kappa=-(l+1)$ for the same n and $l \neq 0$. However, it should be noted that $l \neq 0$ for $\kappa=l$. Moreover, for better visualization some features of these uncertainties are also plotted in figures 1-4. We find that the relativistic corrections to the non-relativistic values of these uncertainties are very small when the value of charge Z is not too big, while the relativistic corrections to them will appear for large Z (e.g., $Z=87$).

By analysing tables 1-4 and figures 1-4 carefully, we find that there are a few kinds of change rules. First, for the same principal quantum number n, the analytical uncertainties Δp_{r} and the product $\Delta r \Delta p_{r}$ decrease as l increases. It should be pointed out that, in the nonrelativistic hydrogen-like atoms case, the uncertainties $\langle r\rangle$ and Δr also decrease as l increases

Figure 1. The change rule in the uncertainty Δr with respect to the quantum numbers n and l for $Z=87$. For the same l, this uncertainty increases as n increases.

Table 4. Some uncertainties of the Dirac hydrogen-like atom $\operatorname{Fr}(Z=87)$ for $\kappa=-(l+1)$.

$(n l)$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{R}$	$\left(\frac{\langle r\rangle}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{a_{0}}\right)_{R}$	$\left(\frac{\Delta r}{a_{0}}\right)_{N}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{R}$	$\left(\frac{\Delta r}{\langle r\rangle}\right)_{N}$	$\left(\frac{\Delta p_{r} a_{0}}{\hbar}\right)_{R}$	$\left(\frac{a_{0} \Delta p_{r}}{\hbar}\right)_{N}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{R}$	$\left(\frac{\Delta r \Delta p_{r}}{\hbar}\right)_{N}$
(10)	0.01462623	0.017241379	0.009168359	0.009954315	0.6268435	0.57735027	117.8515	87.00000	1.080505	0.8660254
(20)	0.05787543	0.06896552	0.02587886	0.028155055	0.4471477	0.40824829	60.3466	43.500000	1.561700	1.2247449
(21)	0.05509205	0.05747126	0.02516430	0.025701931	0.4567682	0.44721360	26.02874	25.11474	0.654995	0.6454972
(30)	0.13610568	0.15517241	0.05269901	0.057183186	0.3871918	0.36851387	37.78546	29.000000	1.991256	1.6583124
(31)	0.1371254	0.14367816	0.05500015	0.056016059	0.4010938	0.38987177	22.66156	21.615324	1.246389	1.2108053
(32)	0.1183454	0.12068966	0.04517122	0.045616402	0.3816895	0.37796447	13.14921	12.969194	0.593966	0.5916080
(40)	0.2489047	0.27586207	0.09060522	0.09753197	0.3640157	0.35355339	27.02470	21.750000	2.448579	2.1213203
(41)	0.2540303	0.26436782	0.09502085	0.09685230	0.3740532	0.36635434	18.57144	17.758801	1.764674	1.7199806
(42)	0.2361979	0.24137931	0.09048807	0.09123280	0.3831028	0.37796447	14.01374	13.755908	1.268076	1.2549900
(43)	0.2045641	0.20689655	0.06857568	0.06896552	0.3352283	0.33333333	8.280960	8.220727	0.567872	0.5669467
(50)	0.3962112	0.43103448	0.13985802	0.14931472	0.3529886	0.34641016	20.89587	17.400000	2.92246	2.5980762
(51)	0.4055337	0.41954023	0.14605301	0.14887165	0.3601501	0.35484476	15.51306	14.900470	2.265730	2.2182576
(52)	0.3887960	0.39655172	0.1440828	0.14527844	0.3705872	0.36635434	12.78869	12.547318	1.842631	1.8228549
(53)	0.3575767	0.36206897	0.1318056	0.13243355	0.3686078	0.36576885	9.84972	9.754647	1.298248	1.2918425
(54)	0.3137649	0.31609195	0.0949538	0.09530531	0.3026274	0.30151134	5.826272	5.800000	0.553227	0.5527708
(60)	0.5780100	0.6206897	0.20054152	0.21256600	0.3469517	0.34246744	16.98097	14.500000	3.40539	3.0822070
(61)	0.5915658	0.6091954	0.2083653	0.21225500	0.3522267	0.34841859	13.25750	12.787798	2.762402	2.7142741
(62)	0.5759817	0.5862069	0.2079862	0.20975043	0.3610987	0.35780956	11.43836	11.231652	2.379022	2.3558438
(63)	0.5452586	0.5517241	0.2001384	0.20106731	0.3670523	0.36443449	9.59140	9.492478	1.919607	1.9086270
(64)	0.5016734	0.5057471	0.1782485	0.17880861	0.3553078	0.35355339	7.426618	7.383039	1.323784	1.3201509
(65)	0.4459517	0.4482759	0.1240066	0.12432935	0.2780719	0.27735010	4.385371	4.371914	0.543815	0.5435573

except for the uncertainties Δp_{r} and $\Delta r \Delta p_{r}$, as discussed by Kuo [4]. On the other hand, for the same n the uncertainty $\langle r\rangle_{R}$ first increases and then decreases as l increases for large values of charge $Z=37,87$, namely, the uncertainty $\langle r\rangle_{R}$ for states $(n, l=1)(n=3-6)$ is biggest. This kind of property does not exist at all in the non-relativistic hydrogen-like atoms case. The difference between them should arise from the relativistic corrections to the non-relativistic values of these uncertainties. Second, all uncertainties for the same n and $l=n-1$ are smallest in comparison with those for the same n but $l \neq n-1$. This property is not new since it also exists in the non-relativistic case. Third, it is found that the relativistic corrections to non-relativistic values of these uncertainties are very small when the values of charge Z are not too big, while the relativistic corrections to them will appear when Z is large, in particular for $Z=87$. Fourth, the product $\Delta r \Delta p_{r}$ in the non-relativistic case is independent of the value

Figure 2. The change rule in the uncertainty Δp_{r} with respect to the quantum numbers n and l for $Z=87$. For the same n, this uncertainty decreases as l increases. Here $\hbar=h / 2 \pi$ is used.

Figure 3. The change rule in the relative dispersion $\Delta r /\langle r\rangle$ with respect to the quantum numbers n and l for $Z=87$. It is found that there does not exist any explicit change rule for the same n or l.
of charge Z (see equation (37) below), while in the relativistic case it is related with the value of charge Z, in particular when Z is very large, say $Z=87$, the relativistic correction to it appears. Furthermore, $\left(\Delta p_{r}\right)_{R}$ and $\left(\Delta r \Delta p_{r}\right)_{R}$ are almost equal to those in the non-relativistic case when n is large. That is to say, the relativistic corrections to the non-relativistic values become very small and can be ignored when one analyses the behaviour of the uncertainties of the radius r and radial momentum p_{r} or their product for large n. Fifth, for the same l both Δr and $\Delta r \Delta p_{r}$ increase as n increases, while both Δp_{r} and $\Delta r /\langle r\rangle$ decrease. This property exists both in the non-relativistic case and in the relativistic case.

4. Special cases for $l=0$ and $l=n-1$

In order to have an insight into the features of those uncertainties, we attempt to study two special cases for $l=0$ and $l=n-1$, as shown in [4]. First, let us consider the special

Figure 4. The change rule in the uncertainty $\Delta r \Delta p_{r}$ with respect to the quantum numbers n and l for $Z=87$. For the same l, this uncertainty increases as n increases, while for the same n, it decreases as l increases.
case $l=0$. For this case, we have $\kappa=-(l+1)=-1$. The corresponding results for $\kappa=-(l+1)=-1$ are given by

$$
\begin{align*}
& \left.\Delta r\right|_{\kappa=-1}=\frac{\omega}{2 Z \zeta},\left.\quad \Delta p_{r}\right|_{\kappa=-1}=\frac{\tau}{a_{0} \zeta^{2} \sqrt{\left.\left(4 \gamma^{2}-1\right)(1+\zeta)\right)}}, \tag{22}\\
& \left.\Delta r \Delta p_{r}\right|_{\kappa=-1}=\frac{\tau \omega}{2 Z a_{0} \zeta^{3} \sqrt{\left(4 \gamma^{2}-1\right)(1+\zeta)}}, \tag{23}
\end{align*}
$$

$$
\begin{equation*}
\left.\frac{\Delta r}{\langle r\rangle}\right|_{\kappa=-1}=\frac{\omega}{a_{0}\left[-5+3 n^{3}+\zeta+9 n^{2}(\gamma-1)+11 \gamma-6 \gamma^{2}+n\left(11-18 \gamma+6 \gamma^{2}\right)\right]}, \tag{24}
\end{equation*}
$$

where
$\zeta=\sqrt{2-2 \gamma+n(-2+n+2 \gamma)}$,
$\omega=a_{0}\{1+(n-1)(n+2 \gamma-1)[5+4(n-1)(n+2 \gamma-1)]+2(n+\gamma-1) \zeta$

$$
\begin{gather*}
\left.+(n-1)^{2}(n+2 \gamma-1)^{2}\left[n^{2}+2 n(\gamma-1)-(\gamma-1)(3+\gamma)\right]\right\}^{1 / 2} \tag{26}\\
\tau=\hbar Z\left\{n\left[2-n+2 n \gamma+4(n-1) \gamma^{2}\right]+\left[n(2-n)-2 \gamma+4 n \gamma+4(n-1)^{2} \gamma^{2}\right] \zeta\right\}^{1 / 2} \tag{27}
\end{gather*}
$$

Second, let us study the special case $l=n-1$. Here, we study two different cases for both $\kappa=-(l+1)=-n$ and $\kappa=l=n-1$. For $\kappa=-(l+1)=-n$, we have

$$
\begin{array}{ll}
\left.\Delta r\right|_{\kappa=-n}=\frac{n a_{0} \sqrt{1+2 \gamma}}{2 Z}, & \left.\Delta p_{r}\right|_{\kappa=-n}=\frac{\hbar Z}{n a_{0} \sqrt{2 \gamma-1}}, \\
\left.\frac{\Delta r}{\langle r\rangle}\right|_{\kappa=-n}=\frac{1}{\sqrt{1+2 \gamma}}, & \left.\Delta r \Delta p_{r}\right|_{\kappa=-n}=\frac{\hbar}{2 \sqrt{\frac{2 \gamma-1}{2 \gamma+1}}} . \tag{29}
\end{array}
$$

For $\kappa=l=n-1$, however, we can obtain the following complicated results:

$$
\begin{aligned}
& \left.\Delta r\right|_{\kappa=n-1}=\frac{a_{0} \zeta}{2 Z \zeta^{\prime}},\left.\quad \Delta p_{r}\right|_{\kappa=n-1}=\frac{\hbar Z v}{a_{0} \zeta^{\prime 2} \sqrt{\left(4 \gamma^{2}-1\right)\left(1-n+\zeta^{\prime}\right)}} \\
& \left.\Delta r \Delta p_{r}\right|_{\kappa=n-1}=\frac{\hbar \zeta v}{2 \zeta^{\prime 3} \sqrt{\left(4 \gamma^{2}-1\right)\left(1-n+\zeta^{\prime}\right)}}
\end{aligned}
$$

$$
\begin{equation*}
\left.\frac{\Delta r}{\langle r\rangle}\right|_{\kappa=n-1}=\frac{\varsigma}{(1-n) \zeta^{\prime}+(1+\gamma)[5+2 n(n-2)+6 \gamma]} \tag{32}
\end{equation*}
$$

where

$$
\begin{align*}
& \zeta^{\prime}=\sqrt{2-2 n+n^{2}+2 \gamma} \tag{33}\\
& \begin{aligned}
\varsigma= & {\left[(\gamma-3)(1+\gamma)(1+2 \gamma)^{2}+2(n-1)^{3}(1+\gamma) \zeta^{\prime}\right.} \\
& \left.\quad+(n-1)^{4}(3+4 \gamma)+(n-1)^{2}(1+2 \gamma)(7+8 \gamma)\right]^{1 / 2}
\end{aligned} \\
& \begin{array}{l}
v=\left\{\zeta^{\prime}\left[n(n-2)+6(n-1)^{2} \gamma+4 \gamma^{2}\right]-(n-1)\left[n(n-2)+2[4+3 n(n-2)] \gamma+8 \gamma^{2}\right]\right\}^{1 / 2}
\end{array} \tag{34}
\end{align*}
$$

5. Non-relativistic limit

We now study the non-relativistic limit of the Dirac hydrogen-like atoms. According to [1], we have $\kappa=\gamma=l, N=n$ and $\epsilon=1$ if ignoring α in comparison with unity. Thus, $g(r)$ vanishes because of the factor $1-\epsilon$, and $f(r)$ is nothing but the normalized Schrödinger wavefunction if replacing κ by l. Similarly, in this limit we are able to obtain the following uncertainties of the non-relativistic hydrogen-like atoms,

$$
\begin{array}{lr}
\Delta r=\frac{a_{0}}{2 Z} \sqrt{n^{2}\left(2+n^{2}\right)-l^{2}(l+1)^{2}}, & \Delta p_{r}=\frac{Z \hbar}{n a_{0}} \sqrt{1-\frac{2 l(l+1)}{n(1+2 l)}} \\
\frac{\Delta r}{\langle r\rangle}=\frac{\sqrt{n^{2}(2+n)^{2}-l^{2}(l+1)^{2}}}{3 n^{2}-l(l+1)}, & \Delta r \Delta p_{r}=\frac{\hbar}{2} \sqrt{1-\frac{2 l(l+1)}{n(1+2 l)}} \sqrt{\left(2+n^{2}\right)-\frac{l^{2}(l+1)^{2}}{n^{2}}} . \tag{37}
\end{array}
$$

Similarly, we have for $\kappa=-(l+1)$ or l and $l=n-1$

$$
\begin{array}{ll}
\Delta r=\frac{a_{0} n \sqrt{1+2 n}}{2 Z}, & \Delta p_{r}=\frac{\hbar Z}{a_{0} n \sqrt{2 n-1}} \tag{38}\\
\frac{\Delta r}{\langle r\rangle}=\frac{1}{\sqrt{1+2 n}}, & \Delta r \Delta p_{r}=\frac{\hbar}{2} \sqrt{\frac{2 n+1}{2 n-1}}
\end{array}
$$

For the $l=0$ case, however, we have

$$
\begin{array}{ll}
\Delta r=\frac{n a_{0}}{2 Z} \sqrt{2+n^{2}}, & \Delta p_{r}=\frac{\hbar Z}{n a_{0}} \\
\frac{\Delta r}{\langle r\rangle}=\frac{\sqrt{2+n^{2}}}{3 n}, & \Delta r \Delta p_{r}=\frac{\hbar}{2} \sqrt{n^{2}+2} \tag{39}
\end{array}
$$

6. Concluding remarks

With the aid of the MATHEMATICA package INTEPFFLL, we have shown that the uncertainties $\Delta r, \Delta p_{r}$, the relative dispersion $\Delta r /\langle r\rangle$ and the product $\Delta r \Delta p_{r}$ for the Dirac hydrogen-like atoms can be obtained analytically. All these quantities are found to depend on the quantum numbers n and l as well as the value of charge Z. However, it should be pointed out that $\Delta r \Delta p_{r}$ in the non-relativistic case is independent of the value of charge Z. On the other hand, we have found that the relativistic corrections to the non-relativistic values of these uncertainties are very small when the value of charge Z is not too big, while the relativistic corrections to them will appear for large Z (e.g., $Z=87$). In addition, we have also found that the uncertainty $\langle r\rangle_{R}$ for states $(n, l=1)(n \in[3,6])$ is biggest. This property does not exist at all in the non-relativistic case. It should be mentioned that these properties are new in comparison with those in the non-relativistic case. We do not want to summarize other properties of these uncertainties for simplicity since they have been given in section 3 .

The fact that the uncertainties Δr and Δp_{r} presented in this work are found to be exact and analytical suggests that both the position and momentum of an electron in the relativistic Dirac hydrogen-like atoms can be measured simultaneously with known uncertainties if the wavefunctions of that electron could be specified. A similar conclusion was also drawn by Kuo in the non-relativistic case [4], in which he also explained the inequality ' \geqslant ' appearing in the uncertainty relation of Heisenberg. The detailed information can be found in [4]. Before ending this work, we make a remark here. The present case tells us that because the wavefunctions of this quantum system are put into the calculations of the position-momentum uncertainties, we obtain the exact uncertainties. Therefore, the present approach may be used to investigate these uncertainties for other quantum systems if the wavefunctions are known exactly.

Acknowledgments

One of the authors (DSH) started this work at IMP, Mexico. The authors would like to thank the kind referee and board member for positive and invaluable suggestions, from which we have improved the manuscript greatly. This work was supported by Natural Science Basic Research Plan in Shanxi Province of China (Program No:2005A22), NSF of the Education Bureau of Shanxi Province of China under Grant O5jk238 and Project No 20062088-SIP-IPN, Mexico.

References

[1] Heisenberg W 1927 Z. Phys. 43172
[2] Remak B 1931 Z. Phys. 69332
[3] Nieto M M 1979 Phys. Rev. A 20700
[4] Kuo C D 2005 Ann. Phys. 316431
[5] Qiang W C 2005 Proc. 7th Int. Mathematica Symp. Australia
[6] Greiner W 2000 Relativistic Quantum Mechanics 3rd edn (Berlin: Springer)
[7] Yndurain F J 1996 Relativistic Quantum Mechanics and Introduction to Field Theory (Berlin: Springer)
[8] Corinaldesi E 1963 Relativistic Wave Mechanics (Amsterdam: North-Holland)
[9] Bethe H A and Salpeter E E 1957 Quantum Mechanics of One- and Two-Electron Atoms (Berlin: Springer) pp 13-17
[10] Qiang W C and Dong S H 2004 Phys. Scr. 70276
[11] Qiang W C, Zhou R S and Gao Y 2005 Phys. Lett. A 33481
[12] Carlitz L 1961 Arch. Math. Basel 12334
[13] Mavrommatis H A 1990 Int. J. Comput. Math. 36257
[14] Leo P A, Ong S H and Srivsstava H M 2001 Int. J. Comput. Math. 78303
[15] Gradshteyn I S and Ryzhik I M 1994 Tables of Integrals, Series and Products 5th edn (New York: Academic)

