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Abstract

We show how the radial position—-momentum uncertainty product can be
obtained analytically for the Dirac hydrogen-like atoms. Some interesting
features for this system are found. First, for the same principal quantum
number 7, as the azimuthal quantum number / increases, the uncertainties Ap,
and ArAp, decrease. However, the uncertainty Ar does not always decrease,
which is different from the non-relativistic hydrogen-like atoms case, where it
always decreases. Second, for the same / both Ar and ArAp, increase as n
increases. Third, all uncertainties for the same 7 and [ = n — 1 are smallest in
comparison with those for the same n but [ # n — 1. Fourth, the uncertainty
ArAp, is independent of the value of charge Z in the non-relativistic case,
while it is related with the value of charge Z in the relativistic case. Fifth,
the relativistic corrections to the non-relativistic values of uncertainties are
very small when the values of charge Z are not too big, while the relativistic
corrections to them will appear explicitly for a large value of charge Z.

PACS numbers: 03.65.—w, 03.65.Pm

1. Introduction

The great physicist Heisenberg introduced into physics a famous ‘uncertainty principle’ which
is one of the deepest philosophical contributions in quantum mechanics. The frequently quoted
statement of this principle addresses: ‘It is impossible to know both the position and the
momentum of a particle at a given momentum to an arbitrary degree of accuracy’ [1], which
is expressed as AxAp > h/2.

It is usually known that the position—-momentum uncertainty products for the harmonic
oscillator and non-relativistic hydrogen atom were obtained analytically 75 years ago [2].
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Some decades later, the position-momentum uncertainty relations for several exactly solvable
potentials such as the symmetric Poschl-Teller, symmetric Rosen—Morse and one-dimensional
Morse potentials were carried out and discussed [3]. It should be noted that almost
all contributions to this topic are limited to the one-dimensional Schrodinger equation.
Nevertheless, the radial position—-momentum uncertainties for the non-relativistic hydrogen-
like atoms in three dimensions have been studied recently by Kuo [4]. Due to their importance
in physics, we attempt to show how the position—-momentum uncertainty relations for the Dirac
hydrogen-like atoms can be obtained analytically, which is the main purpose of this work.

This paper is organized as follows. In section 2 we present the exact uncertainties
Ar, Ap, and Ar Ap, for the Dirac hydrogen-like atoms with the aid of the recently developed
MATHEMATICA package INTEPFFLL [5]. Section 3 is devoted to the study of some
interesting properties of these uncertainties by taking a few typical values of charge Z. In
section 4 we study two special cases for / = 0 and [ = n — 1. The non-relativistic limit is
carried out in section 5. Some concluding remarks are given in section 6.

2. Relativistic hydrogen-like atoms

Let us first mention the convention used in writing the exact solutions of the Dirac hydrogen-
like atoms before studying the mean values of the position r and radial momentum p,.
Generally speaking, we can write down the Dirac equation as follows:

[ca - p+pBmc* +V(r)|¥(r) = EV(r), (1)

where « and g are the Dirac matrices given by

0 o 1 O
€D - Y)

If we make use of the convenient form [6—8]
if(rQLim, @0,
W) = S0, @) ’ 3)
—8r)2jrm (0, ¢)

where I = j £ 1/2,|l — I'| = 1 and /;,,(0, ¢) are the spherical spinors, then the exact
solutions of the Dirac equation with a Coulomb-like potential V (r) = —Ze/r can be expressed
as follows (¢ = 1) [6, 9],

qu L @py JUiGWQV+W+D

e Pr@pryr!

g | T Ty + 1) W4AN(N — k)
X [Fa' F(—n'+1,14+2y,28r)+ (N — ) F(—n', 1 + 2y, 2811, 4)

with the following dimensionless parameters

V4
B=—— y = VK2 — 722, N =/n2 =21/ (k| — y),

Nao’
mea E 22 172 n+y
ag = —, e=—=|14—— = , (5
7 Eo ' +7)? N
n=n'+kl=n"+j+1/2, n=0,12,...,

where the fine structure constant is taken as o ~ 1/137. The E and Ey = mc?* denote the
energy and the rest energy of the electron, respectively, and « is defined by
_{—(j+1/2)=—(l+1), forj =1+1/2,

G +1/2) =1, for j =1—1/2. ©
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Now, we derive the position uncertainty Ar for the Dirac hydrogen-like atoms case. To
this end, from equation (4) we can evaluate the mean values of r* as follows:

() = /0 PRAFOP + 1) dr

2T (1+n' +2
= (+n +2y) (n?Ipp(n’ —1,0,1+2y,0,5s — 1)

N(N —)w'!T (1 +2y)?

+2n'e(=N +)Ipp(n' —1,1,1+2y,0,s — 1)

+(N =) Ipp(@',0,1+2y,0,5 = D], ()
where we have used our developed MATHEMATICA package INTEPFFLL to compute
these complicated integrals including the product of the confluent hypergeometric functions
[5, 10, 11]

o0
Ipp(n, An, pu, A, X)) = / e X" F(—n, p; x)F[—(n + An), u+ Ay x]dx, ®)
0

where An, Ap and X are integers and An > 0.

Here we want to make two useful remarks about equation (8). First, this integral formula
for some different choices of An, Ap and A can be obtained analytically as shown in our recent
works [5, 10, 11]. Also, it should be pointed out that our developed package INTEPFFLL
are enough to be used to perform all the present calculations of uncertainty relations for the
Dirac hydrogen-like atoms even though this program has its own limitation. Second, it is well
known that the confluent hypergeometric functions can be written as the form of the associated
Laguerre polynomials [15]

F(—n,pu;x) = TG

— 7 Py, =0,1,2,..., % 0. (©
Tore 0 (x) n e > Q)

Using this, we can define

o0
Ipp(n,m, pu,v, )»)=/ e X F(—n, u; x)F(—m, v; x) dx,
0

=TT () nim! e L ()L () d (10)
Cn+w)Cm+v) Jy " " ’

where n,m =0, 1,2,..., and Reu > 0, Rev > 0 and ReA > —1. Therefore, we notice that
this formula is more general than /Iy given in equation (8) since @ and v are not limited to
integers only. To show the existence of an exact analytical formula for equation (10), we want
to briefly sketch this result following [12—-14], from which one can obtain the following result:

Frmn+pu—A2—0DI'm+v—A1—1)
nm'(u—A—DI'v=—A—-1)
X3 (—n,—m, A+ ;A —pu—n+2,A—v—m+2;1), (1

o0
/ e XML ()L () dey = T(A + 1)
0

where 3 F, is a generalized hypergeometric series. It can be easy to compute by using its
well-known definition

"R (= (=m(@)
—1)k (—m)r(d)k
sba(=n,—m,a;b,c; 1) = —_— (12)
,; (B)(e)k!
where (x) stands for the Pochhammer symbol defined by

I'x+k)

X)) =



8666 W-C Qiang and S-H Dong

Thus, we can finally express equation (10) as follows:
rwlrolra+DIre+p—Ar2—-—Hrim+v—-—1—1)
F'n+w)(m+v) F'u—XA—Dr'(v—A—-1)
X3F(—n,—m, A+ ;A —pu—n+2,A—v—m+2;1). (14)
It should be pointed out that, in principle, we can make use of these two formulae (8)
and (14) to obtain all results that we require. Nevertheless, we can quickly obtain all required
calculations of the uncertainty relations for the Dirac hydrogen-like atoms with the aid of our
developed MATHEMATICA program. Moreover, it should be noted that the results obtained
from this MATHEMATICA package are also analytical, as shown in our recent works and
present paper [10, 11]. In particular, such a tedious task can be easily and quickly performed
by this MATHEMATICA package [5].
We now go about to study the uncertainty relations for the Dirac hydrogen-like atoms.
In order to calculate the uncertainty Ar, we have to know the mean values of r and r? for an
electron in the Dirac hydrogen-like atoms case. Fortunately, they have been already known in
our recent work [11]:

Inp(n,m, w,v,A) =

/ 3 ! (4, 2 2 2
(ry = 20 _K+(n+)/)[n(n+ y) +2«?] ’ 5
2Z N
2
() = S0 00+ 29)(1+ 502 + 100"y +4y?) + (1 + 30"
+6n'y +2y2)k* = 3(n’ + y)N]. (16)

The uncertainty Ar in the measurement of the distance of the electron from the nucleus can
be obtained as follows:

Ar =) = )7

— o 121 2 2 Ie, 22 1ot Lot 2
= 2ZN2[n M +2y)°QC+n“+2n'y —y)+n(n +2y)B+4n'(n" +2y))k
— 2N + )i + (1 +20' (' +2y))c*]V?, 17)

which means that Ar is inversely proportional to the value of charge Z except for its dependence
on the principal quantum number n (n’ = n — |« |) and azimuthal quantum number /. The latter
can take n different values in all for a given n with/ = 0, 1,...,n — 1. On the other hand,
the relative dispersion Ar/(r) in the measurement of radial position, which also depends on
the quantum numbers 7 and / as well as the value of charge Z, will give us a possible estimate
of how indeterminate the measurement in radial position r is relative to the mean value (r) of
the radial position r for an electron in the Dirac hydrogen-like atoms.

In order to obtain the product Ar Ap, of the uncertainties Ar and Ap,, we have to study
the radial momentum uncertainty Ap,. To this end, we begin by considering the definition of
the radial momentum

10 . a 1
pr = lhrarr_ lh(ar-'_r)’ (18)
from which we can obtain (p,) = 0. This coincides with the result for other exactly solvable
potentials [2—4].
Now, let us derive the mean value of p?
00 1 82
(p?) = (=in)? / P, 8= 5 {f (), g () dr

0

o (T (M) (e
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Table 1. Some uncertainties of the Dirac hydrogen-like atom H (Z = 1) forx = —( + 1).

. . , A A ArA, ArA,
o) (D (@ (@)r () (#)r () CFY (S (e ()

(10) 1499973 1.5000000  0.8660177  0.8660254 0.5773554 0.57735027 1.0000266 1.00000000  0.866 041 0.866 0254
(20)  5.999883  6.000000 2.449 468 24494897 0.4082526 0.40824829 0.5000150 0.50000000  1.224771 1.2247449
(21) 4999973  5.000000 2.236062 22360680 0.4472148 0.44721360 0.2886764 028867513  0.6454984  0.6454972
(30) 13.499802 13.500000 4.974 893 49749372 0.3685160 0.36851387 0.3333413 0.33333333 1.658337 1.6583124
(31) 12.49993 12.500 000 4.873386 4.8733972  0.3898732 0.38987177 0.2484535 024845200  1.210810  1.2108053
(32) 10.49997  10.500 000 3.968 622 3.9686270 0.3779650 0.37796447 0.1490715 0.14907120  0.591608  0.5916080
(40) 23.99972  24.000 000 8.485212 8.4852814 0.3535546 0.35355339  0.2500049 025000000  2.121345  2.1213203
(41) 2299988  23.000000 8.426 130 8.4261498 0.3663553 0.36635434 0.204 1253 0.204124 15 1719986  1.7199806
(42) 20.99994  21.000000 7.937246 7.9372539 0.3779651 0.37796447 0.158 1143 0.15811388  1.254992  1.2549900
(43) 17.99997  18.000000 5.999 996 6.000000  0.3333336 0.33333333  0.0944912 0.09449112  0.566947  0.566 9467
(50) 37.49964  37.500000  12.990286  12.990381 0.3464109  0.34641016  0.2000033 0.20000000  2.598100  2.5980762
(51) 3649984  36.500000  12.951803 12.951834  0.3548454 0.35484476 0.1712706 0.17126977 2218263  2.2182576
(52) 34.49991  34.500000 12.63921 12.639225  0.3663549 0.36635434 0.1442224 0.144 22205 1.822857 1.822 8549
(53) 31.49995  31.500000  11.52171 11.521719 03657692 0.36576885 0.1121225 0.11212238  1.291843 1.291 8425
(54) 27.49997  27.500000 8.29156 8291562  0.3015115 0.30151134 0.06666671 0.06666667  0.552771  0.5527708
(60) 53.99956  54.00000 18.493 121 18.493242  0.3424680 0.34246744  0.166 6690 0.166 666667  3.082230  3.0822070
(61) 5299980  53.00000 18.466 14 18.466185  0.3484191 0.34841859  0.146 9868 0.14698618  2.714280  2.7142741
(62) 50.99988  51.00000 18.24827 18.248288  0.3578100 0.35780956 0.1290997 0.12909944  2.355847  2.3558438
(63) 47.99993  48.00000 17.49285 17.492856  0.3644348 0.36443449 0.109 1091 0.109 108 95 1.908 628 1.908 6270
(64) 4399995  44.00000 15.556 34 15.556349  0.3535536 0.35355339 0.08486258 0.08486251 1.320151 1.320 1509
(65) 3899997  39.00000 10.816 65 10.816654 02773502 0.27735010 0.05025191 0.05025189  0.543557  0.5435573

By substituting equation (4) into equation (19) and then using the recursion relation
F(l+a,1+y;2) =yF(l+a,y;2) — Yy F(a, y; ) [15], we can obtain a very complicated
expression of ( pf), which includes 24 integrals Ipg(n, An, m, Am, )) with different n, An, m
and Am. By using package INTEPFFLL [5] and greatly simplifying, we can finally obtain
the uncertainty for the radial momentum p, as follows,

Ap, = (prz) - <pr)2
hZ 3 2 2
= {—4n”y (N —2k) +n“ [-NQ@ +2y) + 4k (1 +2y7)]
agN2/2(4y2 — 1)(N — k)
— 20’y (N =2N? +2Ny — 2k +4N%k —2N«?) + N(1 +2y)(N — )}}'2,  (20)
which depends on the quantum numbers n and / and is proportional to the value of charge Z.
Based on the results (17) and (20), we finally obtain a rather complicated expression of
the product of the radial position and radial momentum uncertainties,

h
2N3/2(4y? — 1)(N? — )
+0' (1 +29)B+4n' (0 +29)k? — 2N + )i + (1 + 20" (0 +2y))k?]

X [—4n"y (N — 2k) + n* (=N (3 +2y) + 4 (1 +2y?)) — 2n'y (N — 2N> + 2Ny
— 2k +4N%k —2Nk?) + N(1 +2y)(N — «)*}'/2, (21)
from which we find that the product ArAp, of the radial position—-momentum uncertainty

relations is exact and analytical. We will study some properties of these uncertainties by
taking a few typical values of charge Z in the next section.

ArAp, = ([0 +29) Q2 +n? +2n'y —y?)

3. Some properties of uncertainties in radial position and momentum

Due to the complicated expressions for the uncertainties Ar, Ap,, relative dispersion Ar/(r)
and product ArAp,, we want to show some interesting features of these uncertainties by
doing some typical calculations. Some useful results of Kk = —(l + 1) for n € [1, 6] and
Z =1, 11, 37, 87 with different / are listed in tables 1-4, where we have used the subscripts R
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Table 2. Some uncertainties of the Dirac hydrogen-like atom Na (Z = 11) forx = —(/ + 1).

- Apr A ArApr ArA,
@) (g (@)n (@)r (@ (#)r () FYr  (FHy (e (R

(10)  0.1360701 0.13636364 0.07864481 0.07872958 0.5779726  0.57735027 11.035688  11.000000  0.867 900 0.866 0254
(20)  0.5441710  0.5454545 0.2224410 0.22268089  0.4087704  0.40824829  5.520068 5.5000000  1.227 889 1.2247449
(21) 04542523 0.454 5455 0.2032133 020327891  0.4473579 0.44721360 3.177134 3.175426  0.6456361  0.6454972
(30) 1.2250883  1.2272727 0.4517800 045226702 03687734 0.36851387  3.677380 3.6666667 1.661367 1.6583124
(31) 1.135549 1.1363636 0.4429141 044303611 0.3900439  0.38987177  2.734932 27329720 1.211340 1.2108053
(32) 0954252 0.9545455 0.3607289 0.36078427  0.3780225 0.37796447  1.640136 1.639783 0.591 644 0.591 6080
(40) 2178746  2.1818182 0.770 6280 0.77138922  0.3537025 0.35355339  2.756 546 2.7500000  2.124271 2.1213203
(41)  2.089627 2.0909091 0.7657918 0.76601362  0.3664730  0.36635434  2.246 890 2.2453656  1.720650 1.7199806
(42) 1.908441 1.909 0909 0.7214766 0.72156854 03780451 0.37796447 1.739758 1.7392527  1.255195 1.254 9900
(43) 1.636071 1.6363636 0.5454057 0.545 4545 03333632 0.33333333  1.039522 1.0394023  0.566 961 0.566 9467
(50) 3.405135 3.409 0909 1.179 8985 1.1809437 0.3465056  0.34641016  2.204 392 2.2000000  2.600959 2.598 0762

(51) 3.316446 3.3181818 1.177 0960 1.1774394 0.3549269  0.35484476  1.885120 1.8839674  2.218967 2.2182576
(52) 3.135391 3.1363636 1.148 8725 1.149 0204 0.3664209 0.36635434 1.586916 1.5864426 1.823164 1.822 8549
(53) 2.863071 2.863 6364 1.047 351 1.047 4290 0.3658137  0.36576885  1.233535 12333462 1.291944 1.291 8425

(54) 2499707 2.500 0000 0.753734 0.7537784 0.3015290 0.30151134 0.7333859 0.7333333  0.552778 0.5527708
(60)  4.904253 4.909 0909 1.679 8704 1.6812038 0.3425334  0.34246744  1.836478 1.8333333  3.085045 3.0822070
(61) 4816000  4.8181818 1.678 2687 1.678 7441 0.3484777 0.34841859  1.617734 1.6168480  2.714993 2.7142741
(62) 4.635081 4.636 3636 1.658 716 1.658 9352 0.3578613  0.35780956  1.420499 1.4200939  2.356205 2.3558438
(63) 4.362822 4.363 6364 1.590 144 1.5902596 0.3644759  0.36443449  1.200395 1.2001984  1.908 801 1.908 6270
(64) 3.999486  4.000000 1.414 143 1.4142136 0.3535812  0.35355339  0.933575 0.9334876  1.320209 1.320 1509
(65) 3.545161 3.545455 0.983292 0.9833322 0.2773616  0.27735010  0.5527978  0.5527708 0.543561 0.543 5573

Table 3. Some uncertainties of the Dirac hydrogen-like atom Rb (Z = 37) forx = —(I + 1).

Apr Apr A Apr
@ (1), @y (@) Gy e G GFYe (5 FFHe (BRD)y

(10)  0.03953621 0.040540541 0.02311435 0.023406092 0.5846374 0.57735027 38.45664  37.000000  0.888900  0.866 0254
(20) 0.1577899  0.16216216  0.06537342 0.066202425 0.4143068 0.40824829 19.31608  18.500000  1.262758  1.2247449
(21) 0.1341449  0.13513514  0.06021245 0.060434270 0.4488611 0.44721360 10.746804 10.680980  0.6470914 0.6454972
(30) 0.3574131 036486486  0.13278291 0.13445776  0.3715110 0.36851387 12.76751 12333333 1.695307  1.6583124
(31) 0.3350914  0.33783784  0.1312995 0.13171344  0.3918319 0.38987177  9.26823 9.192724  1.216914  1.2108053
(32) 0.2827961 028378378  0.1070734  0.10726019  0.3786239 037796447 5529121 5515634  0.592022  0.5916080
(40)  0.638 1608 0.648 6486 0.226 7187 022933193 03552690 0.35355339  9.51455 9250000  2.157128  2.1213203
(41) 0.6172947 0.6216216 0.226 9823 022773378 03677049 0.36635434  7.611316  7.552593  1.727634  1.7199806
(42) 0.5653777 0.567 5676 02142099 021452038 03788793 0.37796447 5869545 5.850214 1257314  1.2549900
(43) 0.4854997 0.486 4865 0.1619976  0.16216216  0.3336719 0.33333333  3.500739  3.496171  0.567111  0.566 9467
(50) 1.0000019 1.0135135 0.3475064 035109138  0.3475057 0.34641016  7.57715 7.400000  2.633108  2.598 0762
(51)  0.9806302 0.986 4865 0.3488874  0.35004956 03557788 0.35484476  6.381351  6.336981 2226373  2.2182576
(52) 09291554  0.9324324 0.3411014  0.34160067 03671091 0.36635434 5354309 5.336216 1.826362  1.8228549
(53) 0.8494475 0.8513514 03111337 031139780  0.3662777 0.36576885  4.155741  4.148528  1.292991 1.2918425
(54) 0.7422569  0.7432432 0.223 9475 022409627 03017116 0.30151134 2468670 2466667  0.552852  0.5527708
(60) 1.4429291 1.459 4595 0.495 2463 0.49981735 03432229 0.34246744  6.29332 6.1666667 3.116742  3.0822070
(61) 1.4250670 1.4324324 0.4974781 0.49908609 03490910 0.34841859 5472587 5438489 2722492  2.7142741
(62) 1.374060 1.3783784 0.4924585 049319696  0.3583967 0.35780956  4.792180 4.776679  2.359950  2.3558438
(63) 1.294557 1.2972973 04723892 0.47277988  0.3649041 0.36443449  4.044534  4.037031 1910594 1.908 6270
(64) 1.187461 1.1891892 0.4202053 042044187  0.3538688 0.35355339  3.143236  3.139913  1.320805  1.3201509
(65) 1.053068 1.054 0541 02922052 0.29234200  0.2774799 0.27735010  1.860349  1.859320  0.543604  0.5435573

and N to denote the relativistic hydrogen-like atoms case and the non-relativistic hydrogen-like
atoms case, respectively. We do not list the results of the Dirac hydrogen-like atoms for other
values of charge Z for simplicity. Similarly, we do not list the results of « = [ since they are
the same as those of k = —(/ + 1) for the same n and [ # 0. However, it should be noted
that [ # O for x = [. Moreover, for better visualization some features of these uncertainties
are also plotted in figures 1-4. We find that the relativistic corrections to the non-relativistic
values of these uncertainties are very small when the value of charge Z is not too big, while
the relativistic corrections to them will appear for large Z (e.g., Z = 87).

By analysing tables 14 and figures 14 carefully, we find that there are a few kinds of
change rules. First, for the same principal quantum number 7, the analytical uncertainties
Ap, and the product Ar Ap, decrease as / increases. It should be pointed out that, in the non-
relativistic hydrogen-like atoms case, the uncertainties (r) and Ar also decrease as / increases
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Figure 1. The change rule in the uncertainty Ar with respect to the quantum numbers » and / for
Z = 87. For the same /, this uncertainty increases as n increases.

Table 4. Some uncertainties of the Dirac hydrogen-like atom Fr (Z = 87) forx = —(l + 1).

o (), @y (35, (35, B By (), (2F),  (Bp), (),
(10) 0.01462623 0.017241379 0.009168359 0.009954315 0.6268435 0.57735027 117.8515 87.000 00 1.080 505 0.866 0254
(20) 0.05787543 0.068 965 52 0.025878 86 0.028 155055 0.447 1477 0.40824829 60.3466 43.500000 1.561700 1.2247449
(21) 0.05509205 0.05747126 0.025164 30 0.025701931 0.4567682 0.44721360 26.028 74 25.11474 0.654995  0.6454972
(30) 0.13610568 0.15517241 0.05269901 0.057183186 0.3871918 0.36851387 37.78546 29.000000 1.991256 1.6583124
(31) 0.1371254 0.143678 16 0.05500015 0.056016059 0.4010938 0.38987177 22.66156 21.615324 1.246389 1.2108053
(32) 0.1183454 0.120 689 66 0.04517122 0.045616402 0.3816895 0.37796447 13.14921 12.969 194 0.593 966 0.591 6080
(40) 0.2489047 0.27586207 0.090 605 22 0.09753197 0.3640157 0.35355339 27.02470 21.750000 2.448579 2.1213203
(41) 0.2540303 0.264 367 82 0.095 02085 0.096 852 30 0.3740532 0.36635434 18.57144 17.758 801 1.764 674 1.719 9806
(42) 0.2361979 0.24137931 0.090488 07 0.09123280 0.3831028 0.37796447 14.01374 13.755908 1.268 076 1.254 9900
(43) 0.2045641 0.206 896 55 0.068 575 68 0.068 965 52 0.3352283 0.33333333 8.280960 8.220727 0.567872 0.566 9467
(50) 0.3962112 0.43103448 0.139858 02 0.14931472 0.3529886 0.34641016 20.89587 17.400000 2.92246 2.598 0762
(51) 0.4055337 0.41954023 0.146 05301 0.148 87165 0.360 1501 0.35484476 15.51306 14900470 2.265730 2.2182576
(52) 0.3887960 0.396 55172 0.144 0828 0.145278 44 0.3705872 0.36635434 12.788 69 12.547318 1.842631 1.822 8549
(53) 0.3575767 0.362 06897 0.131 8056 0.13243355 0.3686078 0.365768 85 9.84972 9.754647 1298248 1.291 8425
(54) 0.3137649 0.31609195 0.094 9538 0.09530531 0.3026274 0.30151134 5.826272 5.800000 0.553227 0.5527708
(60) 0.5780100 0.620 6897 0.20054152 0.212566 00 0.3469517 0.34246744 16.98097 14.500000 3.40539 3.0822070
(61) 0.5915658 0.609 1954 0.208 3653 0.21225500 0.3522267 0.34841859 13.25750 12.787798 2.762402  2.7142741
(62) 0.5759817 0.586 2069 0.207 9862 0.209 75043 0.3610987 0.35780956 11.43836 11.231652 2.379022 2.3558438
(63) 0.5452586 0.5517241 0.200 1384 0.201 067 31 0.3670523 0.36443449 9.59140 9.492478 1.919607 1.908 6270
(64) 0.5016734 0.5057471 0.178 2485 0.178 808 61 0.3553078 0.35355339 7.426 618 7.383039 1.323784 1.320 1509
(65) 0.4459517 0.448 2759 0.124 0066 0.124 32935 0.2780719 0.277 350 10 4.385371 4371914 0.543815 0.543 5573

except for the uncertainties Ap, and Ar Ap,, as discussed by Kuo [4]. On the other hand, for
the same n the uncertainty (r)p first increases and then decreases as / increases for large values
of charge Z = 37, 87, namely, the uncertainty (r) g for states (n,/ = 1)(n = 3 — 6) is biggest.
This kind of property does not exist at all in the non-relativistic hydrogen-like atoms case. The
difference between them should arise from the relativistic corrections to the non-relativistic
values of these uncertainties. Second, all uncertainties for the same n and [ = n — 1 are
smallest in comparison with those for the same n but/ # n — 1. This property is not new since
it also exists in the non-relativistic case. Third, it is found that the relativistic corrections to
non-relativistic values of these uncertainties are very small when the values of charge Z are
not too big, while the relativistic corrections to them will appear when Z is large, in particular
for Z = 87. Fourth, the product Ar Ap, in the non-relativistic case is independent of the value
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Figure 2. The change rule in the uncertainty A p, with respect to the quantum numbers » and / for
Z = 87. For the same n, this uncertainty decreases as / increases. Here i = h /27 is used.
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Figure 3. The change rule in the relative dispersion Ar/(r) with respect to the quantum numbers
nand [ for Z = 87. It is found that there does not exist any explicit change rule for the same # or /.

of charge Z (see equation (37) below), while in the relativistic case it is related with the value
of charge Z, in particular when Z is very large, say Z = 87, the relativistic correction to it
appears. Furthermore, (Ap,)g and (ArAp,)g are almost equal to those in the non-relativistic
case when 7 is large. That is to say, the relativistic corrections to the non-relativistic values
become very small and can be ignored when one analyses the behaviour of the uncertainties
of the radius r and radial momentum p, or their product for large n. Fifth, for the same / both
Ar and ArAp, increase as n increases, while both Ap, and Ar/(r) decrease. This property
exists both in the non-relativistic case and in the relativistic case.

4. Special casesforl =0andl=n —1

In order to have an insight into the features of those uncertainties, we attempt to study two
special cases for/ = 0 and [ = n — 1, as shown in [4]. First, let us consider the special
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Figure 4. The change rule in the uncertainty ArA p, with respect to the quantum numbers 7 and
[ for Z = 87. For the same /, this uncertainty increases as n increases, while for the same #, it
decreases as / increases.

case [ = 0. For this case, we have k = —(I + 1) = —1. The corresponding results for

k = —( +1) = —1 are given by

w T

Ar|_ | = —, Aprle—y = , 22
et 27¢ Prhe—t apl?y/(4y? = (1 +¢)) .
AFAp ey = = 7 (23)
2Zags3/(4y? = D(1+¢)

Ar )
2 - , (24)
(r) ey aol=5+3n3+2+9n%(y — D)+ 11y —6y2 +n(11 — 18y +6y?)]
where
{ =22y +n(=2+n+2y), (25)
w=af{l+m—Dn+2y —D[S+4n — DH(n+2y — D]+2n+y — 1)¢

+(n =1’ +2y —D’[n°+ 20y — 1) — (v = DB+, (26)
T =hZ{n2 —n+2ny +4(n — Dy 1+ [n(2 —n) =2y +4ny +4(n — D*}V2 @27)

Second, let us study the special case | = n — 1. Here, we study two different cases for

bothk = —(+1)=—-nandk =l =n—1. Fork = —(l + 1) = —n, we have
napg/1+2y hzZ
Aty = —2 Apleen = ——, (28)
2Z nap/2y — 1
Ar 1 ArAp,| n 29)
T lk=—n & T /—/—/—, r rlk=—n = .
(r) V1 +2y P 2y—1

2y+1
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For k =1 = n — 1, however, we can obtain the following complicated results:

Arlecur = 25 Aplec = hZy , (30)
22t aof?y/(4y? = (1 —n+¢))
AFAP |y = fov , 31
203y = D1 —n+¢)
Ar _ < 32)

(r_) cen1 A=)+ +y)[5+2n(n —2)+6y]

where

{'=+/2-2n+n%+2y, (33)

s=[(y =3)U+y)A+2y)* +2(n — D’ (1 + )¢’
+(n—D*G+4y)+(n — D1 +2y)(7 +8y)]"2, (34)

v={¢'In(n —2)+6(n — *y +4y*1 — (n — D[n(n —2) + 2[4+ 3n(n — 2)]y + 8y*}"/%.
(35)

5. Non-relativistic limit

We now study the non-relativistic limit of the Dirac hydrogen-like atoms. According to [1],
we have «k = y = [, N = n and € = 1 if ignoring o in comparison with unity. Thus, g(r)
vanishes because of the factor 1 — €, and f(r) is nothing but the normalized Schrodinger
wavefunction if replacing « by /. Similarly, in this limit we are able to obtain the following
uncertainties of the non-relativistic hydrogen-like atoms,

_Zh [ 24+

ao
Ar = —/n?Q2+n?) — 12+ 1), Ap, = -, 36
" 22‘/” @+nf)=FC+D Pr = e n(1+20) (36)
A 224+n)?2 =121+ 1) h 200+ 1 21+ 1)?
Ar _ ym2@+n? — 1% . Arap, =1 [y - HE+D )\/(2+n2)——( U
(r) 32 —I1(1+1) 2 n(l+2l) n?
37
Similarly, we have forxk = —(I+ 1) or/andl =n — 1
aopn/1+2n A hzZ
r = = A~ r =
2Z P apn~/2n — 1 (38)
Ar 1 ArA h [2n+1
—_— = rAp, = - .
(r)  JT+2n Pr=oV2n 1
For the [ = 0 case, however, we have
hZ
Ar = @ 2+n2, Apr = —,
27 nay (39)
Ar  A/2+n?

h
- = , ArAp, = =v/n?+2.
(r) 3n 2
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6. Concluding remarks

With the aid of the MATHEMATICA package INTEPFFLL, we have shown that the
uncertainties Ar, Ap,, the relative dispersion Ar/(r) and the product ArAp, for the Dirac
hydrogen-like atoms can be obtained analytically. All these quantities are found to depend on
the quantum numbers n and / as well as the value of charge Z. However, it should be pointed
out that ArAp, in the non-relativistic case is independent of the value of charge Z. On the
other hand, we have found that the relativistic corrections to the non-relativistic values of these
uncertainties are very small when the value of charge Z is not too big, while the relativistic
corrections to them will appear for large Z (e.g., Z = 87). In addition, we have also found
that the uncertainty (r) for states (n,/ = 1)(n € [3, 6]) is biggest. This property does not
exist at all in the non-relativistic case. It should be mentioned that these properties are new
in comparison with those in the non-relativistic case. We do not want to summarize other
properties of these uncertainties for simplicity since they have been given in section 3.

The fact that the uncertainties Ar and Ap, presented in this work are found to be exact
and analytical suggests that both the position and momentum of an electron in the relativistic
Dirac hydrogen-like atoms can be measured simultaneously with known uncertainties if the
wavefunctions of that electron could be specified. A similar conclusion was also drawn by
Kuo in the non-relativistic case [4], in which he also explained the inequality ‘>’ appearing
in the uncertainty relation of Heisenberg. The detailed information can be found in [4].
Before ending this work, we make a remark here. The present case tells us that because the
wavefunctions of this quantum system are put into the calculations of the position—-momentum
uncertainties, we obtain the exact uncertainties. Therefore, the present approach may be used
to investigate these uncertainties for other quantum systems if the wavefunctions are known
exactly.
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